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SUMMARY. A general solution of the functional equation J f{x+y)dfii(y) 
= 

f(x) where 

/ is a nonnegative function and ?i is a o--finite positive Borel measure on [0, oo ) is shown 

to be f(x) 
= 

p(x) exp (xa?) where p is a periodic function with every yep, the support of ft as a 

period. The solution is applied in characterizing Pareto, exponential and geometric distributions 

by properties of integrated lack of memory, record values, order statistics and conditional 

expectation. 

1. Intbodtjotion 

The Cauchy functional equation 

f{x+y)^f(x)f(y)^(x,y)eS ... (1.1) 

where S is a specified set in R2 has been extensively studied by a number of 

authors (see Aczel, 1966). We consider two integrated versions of (1.1), 

J lf(x+y)-f(x)f(y)]d,i(y)^OYx>x0>^co, ... (1.2) 
10,00) 

J [ ?-^L ~-/W] 
MV) = 0 V * > *o > -?)> - (L3) 

where ?i is a positive Borel measure on [0, oo) and / is nonnegative on ?i (the 

support of fi) in (1.2) and/is positive on ft in (1.3). Both the equations are 

special cases of a general equation of the type 

J f(x+y)d/i(y) =f(x) a.e. for xe[xQ,cc) ... (1.4) 
[o, oo) 
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where/is nonnegative and /i is as in (1.2) and (1.3). We call (1.4) an Integrated 

Cauchy Functional Equation (ICFE), or more specifically ICFE(/?) indicating 
the measure used for integration. We may take #0'in (1.4; to be zero without 

loss of generality (as in (2.1) of section 2). 

We note that the equation (1.4) occurs in renewal theory with ?i as a 

probability measure and/as a bounded continuous function. In such a case, 
when ?i is not arithmetical, Feller (1971, pp. 364, 382) showed that / is a 

constant. This result also follows from a general theorem due to Choquet 
and Deny (I960) which asserts the constancy of a bounded continuous func 

tion in a more general situation where/and ju, are defined on a locally compact 
Abelian group. 

Recently, a number of papers appeared on the solution of (1.4) under 

the conditions that / is a locally integrable nonnegative function (or / satisfies 
a certain growth condition) and that there exists a?>0 such that 

1 < J e v 
d/i(y) < ... (1.5) o 

(see Brandhofe and Da vies, 1980; Ramachandran, 1979; Shimizu, 1978 and 

other papers cited by them). We solve the equation (1.4) without using 
the stringent condition (1.5), which opens up a wide range of applications. 

We show that if a nontrivial solution for / exists, then it is of the form 

f(x) 
? 

p(x)e?x a.e. for x > x0 ... (1.6) 

where p(x-\-z) 
= 

p(x) ^f-ze/i. The solution is applied to characterize the 

exponential, Pareto and geometric distributions by lack of memory, pro 

perties of record values and order statistics, constancy of conditional expecta 
tion etc. 

In the special case when ?i is a lattice and / is defined only on the support 

points of ?i, the equation (1.4) can be written as 

CO 
S fm+ngn=fm, m = 

0,1,... ... 
(1.7) ??o 

where fm and gn are nonnegative numbers. An equation of the type (1.7) 
arose in characterizing a Poisson distribution by what is known as the Rao 

Rubin condition based on a damage model introduced by Rao (see Rao, 1965 

and Rao and Rubin 1964). Shanbhag (1977) proved that a general solution 

of (1.7) is of the form 

fm 
= 

c?m where S gi?* 
= 1 ... (1.8) 

A 1-10 
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under the conditions that gx^0 and at least one fn is not zero. The general 
result obtained by us provides a complete answer to the problem (1.7) : 

(i) If g0 > 1, fm = 0 V m. 

(ii) If g0 
= 1 and ^ is the first in the series gx, g29 ... which is not zero, 

then /0, ...,/<_! 
are 

arbitrary and 
f{+x,fi+2, 

... all are zero. 

(iii) If <70 < 1 and a nontrivial solution exists, then it is of the form 

fm 
= 

Pm?m where 2gr?/?< =1 ... (1.9) 

where pm+i 
= 

j% if 0* t^ 0, thus avoiding the assumption gx ^ 0. 

(iv) If g0 < 1 and no yff exists such that S g^tf* 
= 1, then fm 

= 
0^ m 

is the only possible solution. 

2. Preliminaries 

We define the ICFE(/?) as 

/ f(x+yW(y)=f(x)*..o. xe[09co) ... (2.1) 
[0,?) 

where ?i is a cr-finite positive Borel measure on [0, oo) and not degenerate at 0, 
and / is a nonnegative function. We prove a number of lemmas as prelimi 

nary to the statement of the main Theorems 3.1 and 3.2 given in section 3. 

Lemma 2.1 : Let f be a locally integrable nonnegative (l.i.n.) solution of 
the ICFE ([i) and let a be such thxt 

1< J e??dfi(y). 
[0,oo) 

Then for any ? > a, x ̂  0 

/ e-*' f(y)dy < cd. ... (2.2) X 

If we let 

/(*) 
= 

/ e-e*f(y)dy ... (2.3) X 

then f is a nonnegative, continuous and decreasing solution of the ICFE(ji) where 

dfoy) 
= e*v d/i{y). ... (2.4) 

Proof : The first statement follows from Theorem 1 of Brandhofe and 

Davies (1980). The second statement is a consequence of Fubini's 

theorem. 
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Lemma 2.2 : Let f be a l.i.n. solution o/^2.1). Then the following hold : 

(i) If /?(0) > 1, then f see 0 a.e. 

(ii) // /?(0) 
= 1, then / 

= O a.e. -y x > tt wAcre a = 
m/{# : a; e /?\{0}}. 

(iii) If jti{0) < 1, and there is a solution f which does not vanish a.e., then 

a strictly positive solution exists. Conversely, if a strictly positive 
solution f exists, then ?i(0) < 1. 

Proof of (i) : Let fi(0) > 1. Then 

f(x) = jii(0)f{x)+ J f(x+y)d/?(y) a.e. ... (2.5) 
(0, ot) 

which ==? (fi(0)?l)f(x) ss 0 a.e. or f(x) s= 0 a.e. 

Proof of (ii). Let / and jli be as defined in ^2.3; and (2.4) respectively. 

Then /?(0) = 1 s=^ju(0) = 1 and from (2.5; with / and ?i replaced by / and 

Ji we have 

J f\x+y)dfiiy) 
= o. ... (2.6) 

(0,oo) 

If / f? O.a.e. for x > a (as defined m the statement (ii) of Lemma 2.2), then 

f(x) > 0 for some x > a, and because of the decreasing property of f,f(x) > 0 

on a neighbourhood of a. This would imply that (2.6) cannot be zero which 

is a contradiction. 

Proof of (iii). We show that / (which is a continuous decreasing func 

tion) cannot vanish. Suppose that a > 0 is the smallest value such that 

f(x) = 0 Y x > a. Choose 0 < 8 < a such that Ji(Q, 8) < 1 ? 
fi(0). 

Then f(a-8) 
= f(a-8)?i(0)+ ? fa-*+y)??(y) 

(0,?1 

< f(a-8)?i(0)+f(a-8)(l -0(0)) 
= f(a-8) 

which is a contradiction. The result is established by noting that /(O; ^ 0 

and h(x) 
= efix f(x) is a positive solution of ICFE(/?). The second part of 

statement (iii) follows immediately from (i) and (ii). 

For any subset A in [0. oo), let 

An 
= 

{^i+---+^w -.XfeA, t = 
1, ...9n}. 
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If /i* denotes the w-fold convolution of fi, then ju,n 
= 

fin9 using the notation 

fi to denote the support of /i. Let 

00 
G = 

{x?y :x,ye (J ju,n}. 
?=?1 

? 

Then G is a subgroup of R and is either dense in R or discrete in R. 

Lemma 2.3 : Let 0 < S < 1 aw?, ?i, E and 0 be as defined above. Then 

there exist a finite set A ? 
{px, .--tPmj . E with each pi > 1 and an x0 such 

that for any x ? G with x > x0, we can find a y e\?) An?*\*) ?in satisfying 
the condition \y?x\ < S. 

Proof : Consider the case where ?i generates a discrete group G which 

may be taken as N (the set of integers) without loss of generality. Hence 

there exists a finite subset A = 
{pl9 ...,pm} in p such that the greatest common 

divisor of pX9 ...9pm is unity. We prove the assertion for m = 2 in which 

case the general result follows by induction. It is easily seen that for 

m > prf2 there exist a, ? e N+ (the set of positive integers) such that 

m = 
oupx-\-?p2. Then the result of the lemma holds since me G and 

(*Pi+?P*)e\!)An. 

Now consider the case where fi generates a dense subgroup in R* There 

are two possibilities : 

Case (a). There exists a countable infinite subset B = 
{px,p2, ...} /? 

which generates a dense subgroup of R and that for each n9 [pl9 ..., pn} generates 
a discrete subgroup {mdn :meN) with dn > 0. Then lim dn 

= 0 as n -> oo 

and hence, for any i>0 we can find an n0 such that 
dn < d. Let 

A == 
{px, .-.>Pn}' 

It follows from the previous part that there exists an 

x0 such that for x > x0, there exists a y e \?) An (Z (J fin and | y?x | < 8. 

Gase (b). There exist px,p2 such that they generate a dense subgroup 
in R. Without loss of generality, we may assume that p1 

= p is an irrational 

number and p2 ?= 1 and let A ? 
{l,p}. It is well known that the set 

D = 
[np?[np] : n e N+} is dense in [0, 1]. For anv S > 0, there exist 

n?p, ..., njsp such that for any ? e[041], 

| n^p?lriip]?^ | < S for some i. 

Let n0 
= 

m&x{[nip] : i = 1, ..., k}. Then for any x > n0, there exists an i 

such that 

\ntp-[nip]-~(x-[x])\ 
= 

\inip+[af\?[nip]}?x\ <? 
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with n\ > 0 and [x]?[ntp] > 0. This completes the proof since 

niP+([x]-[niP]) e (J An Q \J pn. 

3. The main theorems 

The following theorems provide a solution of (1.4), the ICFE(/?). 

Theorem 3.1 : Let f be a positive locally integrable solution of the IGFEQi). 

Then 

f(x) 
= 

p(x)e*x a.e. ? (3.1) 

where ? e (?oo, oo) and is uniquely determined by 

1= f#?dfi(y) ... (3.2) 0 

and p is a positive periodic function with every ze/i as a period. 

Theorem 3.2 : Let f be a nonnegative locally integrable solution of the 

ICFE(ft). If /?(O) < 1, then f(x) = p(x)exp(?x) a.e. where ? satisfies (3.2) and 

pjis nonnegative and periodic with every ze/ias a period. 

Note that if there exists no ? such that (3.2) holds, then / 
= 0, a.e. is 

the only solution. 

Remark 1 : It suffices to prove Theorem 3.1 for / positive, convex and 

decreasing. 

Let ? be as in Lemma 2.1. 

Then 

m= J( l<r**fm)ay x y 

is convex, decreasing and satisfies ICFE(/e) where dp,(y) 
= e2^ d/i(y). If ?i 

is proved to be of the form ?l(x) 
= 

p(x)eXx, then/ will also be of the same form 

by taking derivatives. 

Remark 2 : It suffices to prove Theorem 3.1 for v ? S 2~n/in where ?in i 

is the ?i-fold convolution of /i. 

This follows from the fact that if / is a solution of the ICFE (/i), then it 

is also a solution of the ICFE (v), by using Fubini's theorem. We use the 

property that v' D the semigroup (J /in. 
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Remark 3 : Let E = 
{xe/i : ?i(x?8, x] > 0 V 8 > 0}. It is easy to 

show that fi\E is a /?-zero set and E is dense in /i. It suffices to prove the 

periodicity of p for y e E. 

Indeed, by Remark 1 we can assume that / is continuous. Let 

f(x) 
? 

p(x)eXx where p(x+y) 
= 

p(x), *j-y eE. Since E is dense in fi, the 

continuity of p implies that p is periodic for all y e E which is the 
same as /?. 

Since the proof is quite long, we will divide it into several lemmas and 

a main proof. We assume that / is as in Remark 1, the measure p is of the 

form v mentioned in Remark 2, and 1 e E where E is as in Remark 3. The 

same proof works for any a. We prove that f(x) 
= 

p(x)ex* where p is a 

periodic function with period 1. We denote 

.. ?up Jfe+?<1. 
[seo, ?o) j(x) 

Lemma 3.1 : Let 8 be such that 0 < S < c. Then 

* 
m~^ 2 <C f(x+y) ^ye[--Y'0\- 

- <3-3> 

Proof : By the convexity of/ we have for ? 1 < y <[ 0, and any x 

f(x+y+\) <f(z)+[f{z+l)-f(z)](3f+l) 
and 

Henoe 

f(x+y) > f(x)+[f(x+l)-f(x)]y. 

/(a+H-1) ^ /(*)+[/(*+i)-/(*)](y+1) 
f(*+V) 

^ 
/(*)+!/(*+!)-/(*)& 

l+(c-?-l)(y+l) ^ 
l+(c-?5-l)y 

if a; is such that/(a;+1) < (c?d)f(x). The inequality 

l+(6_i_l)(y+l) S S?2 S 

(3.4) 

l+^-i-l)^ 
-^v 

2 
' *-^ 

(l-c+?)(l-c+?/2) 
"^ 

2' 
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Hence for ??/2 < y < 0, from (3.4) 

/(s+y+1) ^ l+(c~S-l)(y+l) . 8 
f(x+y) 

* 
i+(c-*-l)y ^c 2' 

Lemma 3.2 : For any b > a, x > 0, 

Proof : Since / satisfies the ICTE(/i) 

A*+l) _ 
- 

f(x+y+l) 

_c, f (f(x+y+i) c)?*+y)da(v) 

which yields the desired result. 

Lemma 3.3 : Let 0 < e0 < c and k be a given positive integer. Then 

there exists an ?x such that 

0<c-^<?1^0<c~?^<?0Y0<Ki. 
... (3.6) 

f(x) 
1 

f(x+n) 
? v ^ v ' 

Proof : Let 7?k = 
e0/2 and choose ^_j,..., t/0 such that 0 < r?n < e0/2 

and 

2yn 

(c-27in)/i(l-7in+19 1] 
0 < u_o~ \..n ?-?T < Vn+V 

*> = 
0, ..., Jfe?1. 

[Note that 1 e E by assumption so that /?(l?%+1, i] > 0], Now let zx = 
2t/0. 

Then for any x with 0 < c?[/(#+!)//(#)] < 2r/0. Lemma 3.2 implies 

i-V A*+y> / A?) My)< A?) < v? 
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Applying the mean value theorem to the above integral 

f(x+y'+l) f(x) 2Vo 
?*+y') < f(*+y') *i-*, i] Vl y < 

< /(*) H 0 
/(*+!)' Ml-%.1] 

** 
(c-2VMl-Vv 1] 

^ Vl' 

By using a contradiction argument of Lemma 3.1 (replacing x in the lemma 

by x+l) 

By repeating the same argument, 

0<C~//(t+i!)1) 
<%<?oYO<?<?. 

Lemma 3.4 : Let peE?lfi. Then 

(i)' d> = 6 w?ere 6 = 
swp =%t^. 

... (3.7) 

(ii) For any integer k > 0 arad ara^ e0 > 0, there exists an tY such that 

f(x+P) ^ tc t)r>_x f(x+n+lp) ^ , ., , ^ ^ . ,? . 

-^-Xc 
6l)?>=^_____>(c g0)P^l<ra<A. ... (3.8) 

(iii) If p> 1, then for any t0 > 0, there exists an s2 ittcA that 

__>c ?2=s^___>(c ?o)J?. 
... 

(3.9) 

Proof of (i) : For any e0 > 0, there exist integers m9 n > 0 such that 

ft??o ^ mV ^ ft- From Lemma 3.3, there exists an tj for given n such that 

Hence 
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which implies that b > (c?e0)p 
e? 

m. Since e0 is arbitrary, we have ft > c?. 

Note that Lemma 3.3 will apply for p in the place of 1; we then have 

f(x) /(*) 

Now choose m, n > 0 such that mp?10 < n < mp. 

Then en > /j??> > /J^+?> (b-h)m 
f(x) f{z)\ 

which =? & > b. Hence b = cv which establishes (i). 

Proof of (ii) : Again considering p for 1 in Lemma 3.3, and observing that 

6 = cP, we obtain the result (ii). 

Proof of (iii) : Let e0 > 0 and m, n be such that n? ?0 ̂  mp < n. Let 

0 < i < c~[cv^^\c-~^)vfmv^\ 

(Note that the condition p > 1 ensures that the term on the right hand side 

is positive for small ?0). Applying Lemma 3.3, there exists e2 such that 

f(x+l) f(x+n) , 

Then 

f^iw1 >fiw> 
{c~v')n > {c~v'r+e?' 

We claim that 

f(x+P) ^ /c_8 xp 
f{x) 

>(C **?, 

for otherwise 

^ 
/{ar+m-lp) 

'" 
/(*) 

which contradicts the choice of i)'. Thus result (iii) is proved. 

A 1-11 
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Lemma 3.5 : Let O < ?0 < c and px, ...,pn and m0 be chosen as in 

Lemma 2.3 (with all pi > 1). Then for any a > 0, there exists an ?x such that 

/(*+*) > c__e =xf(*+"h>+y) > /c_? f+?o (3 io) 
fix) 

>c ?i=^ 
f{x+mj 

Xe ?o) .- i?.W) 

for all y e [0, a] ft-G. 

Proof : For simplicity, we will prove the case n ? 1, and the extension 

to general n can be carried out in a similar way. 

Let us denote px by p. There are finitely many m's and w's such that 

(w+rap) e [ra0, m0+a], say k. Choose 7/0 e (0, e0) such that 

(c?w n)mv 

m% 
> (c- b)<?+?P>"?o Y ?+?P e [m09 m0+a]. ... (3.11) 

c 

By Lemma 3.4, (ii), we can find r?x e (0, t?0) such that 

/(?) f(x+mp) 
/0/ ^ 

By Lemma 3.4, (iii), we can find r?2 e (0, t/x) such that 

By Lemma 3.3 we can find ^ e (0, r?2) such that 

/(z+1) , x_v f(x+n+l) ^ t . ^7 

It follows that for n+mp e [ra0, m0+a], 

/(*) 
> c??j 

/(?c+ra+mp) _ /(z+^H-mp) f(x+ri) 
f(x+m0) f(x+n) f(x+mQ) 

mp+n?m* 

>(c-Vo) Hn>m0, ... (3.12) 

xmp. mn?n ._ 

>(c-%) /c ifra<m0. ... (3.13) 
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In the case of (3.12), and in the case of (3.13) by the construction (3.11), we 

have 

f(x+n+mp) n+mp-m0 

Now for any y e [0, a] f] G, there exists n-\-mp such that 

n+mp?e0 < m0+y < n+mp. 

Hence 

m^o+? > f(x+n+mp) n+mP-m0 

f(x+m0) 
^ 

f(x+mQ) 

which completes the proof. 

Main proof of Theorem 3.1 : From Lemma 3.4(i), [/(#+?/)//(#)] ^ ?y V* 

yeE. Suppose that [f(x-\-l)jf(x)] < c for some x. By the continuity of/, 
it follows that [f(x-\-y)lf(x)] < cy V" y in a neighbourhood of 1. Hence 

< J c*d/%). 0 

(Strict inequality holds since we assume that ju,(l?8, 1] > 0 for 8 > 0). Then 

there exist a and e0 such that 

K ? (c-t0)y+?odj*(y). 
[ota] 

For the above a and s0, we take m0 and %x as in Lemma 3.5 and choose x0 such 

that [f(x0-{-l)lf(x0)] > c??,. Hence 

K J (c-e0)^c?^(2/) 
[0, a] 

< / ^?Sr^ ?ww? byLemma 3-5 
[o,ain? J\xo+mo) 

0 /(?o+m0) 
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This is a contradiction and hence [f(x+l)jf(x)] 
= c for all x. This implies 

that there exists a ? such that f(x) 
= 

p(x)eXx where p is a periodic function 

with period 1. The above argument applies to any y e E instead of 1. We 

then have f(x) 
= 

q(x) eax where q is a periodic function with period y. Hence 

? = a, and p = q 
= constant on the set a-\-Dx where a e [0, oo) and 

Dx 
= 

{x > 0 : x = 
m-l-\-ny, m,n eN). 

We conclude that f(x) 
= 

p(x) eXx for some ? where p is constant on the set 

a-\-D with a e[0, oo) and 

D = \x > 0 : x = 2 mipi, ra?e JV+, y\eE, i = 1,..., %, 
^eiV+j 

where iV+ is the set of positive integers, which implies that f(x) 
= 

p(x) eXx 

where p is a periodic function with every yeE as a period. 

To prove 

S e*v d?i(y) = 1 
o 

we observe that 

p(x) eXx = f(x) = 
fp(x+y) ex<*+v> d/i(y) o 

= J P(?+y) eA(?C+y) ?/?(?/) = p(x) eXx J e% d?i(y) 
? i* 

which yields the desired result. 

Theorem 3.2 follows by using Lemma 2.2 and Theorem 3.1. 

4. Characterizations of the exponential law 

4.1. Lack of memory : A nonnegative random variable X is said to have 

the lack of memory property if 

P(X > x+y) = P(X > x)P(X >y)Y (x, y)eSQ: R\ 
... (4.1.1) 

Denoting F(x) = P(X < x) and G(x) = 1-F(x), the condition (4.1.1) is 

equivalent to 

G(x+y) = G(x)G(y), ... (4.1.2) 
or 

G^+^ 
= G(x), when G(y) ̂  0, ... (4.1.3) 

t*\y) 



CHARACTERIZATIONS OF THE EXPONENTIAL LAW 85 

Under some conditions on the set S, it is shown that (4.1.1) =^ X~E(?), 

i.e., follows the exponential distribution (see Galambos and Kotz, 1978 for 

complete bibliography and detailed proofs). Recently, Huang (1978), Rama 

chandran (1979) and Shimizu (1978) considered an integrated version of 

(4.1.2) 

f G(x+y)dfi(y) = G(x) J G(y)dfi(y) = cG(x) ... (4.1.4) 
[0, oo) [0, oo) 

where ?i is a p.d.f. and showed that if ?i is not degenerate and /?(0) < c, then 

G is of the form 

G(x) 
= 

p(x)e-** ... (4.1.5) 

where p(x-\-z) 
= 

p(x) for every zefi, the support of fi. In particular if ?i 

is not lattice, then G(x) 
== e~Xx i.e., X *~> 

E(A). 

We consider an integrated version of (4.1.3) 

i ^ntJP dfi(y) = G(x)Vx>xQ ... (4.1.6) 
[0, *) br(y) 

where ?i is a p.d.f. and G(y) is positive on /i. If we write dfij?y) 
= 

[o(y)]_1?/?(y), 

then the equation (4.1.6) can be written 

S G(x+y)dMy) = G(x). ... (4.1.7) 
[0, oc) 

Since /it need not be a p.d.f., the results of the earlier authors do not apply. 

However, Theorem 3.2 shows that 

G(x) 
= 

p(x)e~x* ... (4.1.8) 

provided that /?(0) < G(0), where p(x+z) 
= 

p(x) for every z e ?jl^ 
= 

?i. If 

the support of ?i is not a lattice, then p is a constant. From Theorem 3.1, 

A satisfies the equation 

1 = 
I e~xvd/iJy) 

= 
J e-kv(pe-xy)-H?i(y) 

[0, oo) [0, oo 

which is true for any ? with p = 1. Of course ? > 0, since 1?G is a p.d.f. 

Thus, the equation (4.1.6) provides 
a characterization of E(X). 
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Let us consider a discrete version of the equation (4.1.6) with the random 

variable X taking values 0,1,... with probabilities pQ9pl9.... Defining 

Fm = 
Pm+x+Pm+2+-> an(* assuming that Pm ^ 0, m = 0, 1, ..., the equation 

becomes 

S 
Pyg? =pm,m = 

0,l,.(4.1.9) 

Applying the result (1.9), or the general Theorem 3.1, 

Pm = 
Cm?m ... (4.1.10) 

where cm = 
cm+i if q% ̂ 0, and ? is such that 

o *n 0 c? 

If the greatest common divisor (g.c.d.) of the indices i for which qt ^ 0, is 

unity then cn 
= c = 1 for all n, in which case the probabilities for X are 

p0 
= 

0,px= l-?,p2 
= 

(l-?)?, Ps = 
(I-/?)/?2,. (4.1.11) 

which is the truncated geometric distribution. 

Let the g.c.d. of the indices i for which ft ^ 0 be 2. Then the general 
solution (4.1.11) gives the probabilities 

'0 if i = 0 

Pi 
= < 

?i-i(\-c?) if i is odd ... (4.1.12) 

b /?<_1(c?yff) if i is even 

where c and ? are such that the expressions in (4.1.12) are nonnegative and 

less than unity. Other distributions are possible depending on the support 
of the T distribution characterized by q{. 

If X and Y are required to have the same distribution i.e., p{ 
= 

qi for 

all i in (4.1.9), then it is easily seen by substituting the general solution 

(4.1.10) in (4.1.9) that 

pgi 
= 

qgi 
= 

(l-?e)?c(i-v, i = 1,2,... ... (4.1.13) 

where g is the g.c.d. of the indices i for which p? ^ 0. 

The solutions (4.1.11-4.1.13) for the discrete (lattice) case provide a com 

plete answer to a question raised by Grosswald and Kotz (1980). The solu 

tion (4.1.8) for the non-lattice case is obtained by these authors under some 

regularity conditions on the probability measure ?i, 
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4.2. Record value problem : A random variable Xin) is said to be the 

n-th, record value in successive draws of independent observations from a 

population if Xin) > X{n_v for n > 1 and X{1) 
= 

Xv the first observation. 

If X ~ 
E(X), then [X(w)-X(n_1)] 

~ 
E(X). We shall find the class of distribu 

tions for which this property holds. 

Let F denote the p.d.f. of a nonnegative random variable X and define 

G = 
(l-F). Further let Hn_x denote the p.d.f. of Xin_v. If Xa) and 

X(w)--X(n_1) have the same distribution, then 

J 
^||^ 

*ff?-ifo) = G{x). ... (4.2.1) 

An application of Theorem 3.2 to (4.2.1) shows that 

G(x) 
= 

p(x)e-** ... (4.2.2) 

where p(x) 
= 

p(x-\-z) for all z belonging to the support of Gn_x which is the 

same as the support of G. The distribution function (4.2.2) is E(?) if the 

support of G is not a lattice. The characterization of E(X) through the equa 
tion (4.2.1) has been obtained by Ahsanullah, (1978, 1979) under some condi 

tions on the hazard rate associated with G. 

4.3. Conditional expectation : Sahobov and Geshev (1974) established 

that for a nonnegative random variable X, 

E[(X-z)*\X>z] 
= 

E{X*)V-z>0==*X<-<E(\). ... (4.3.1) 

We prove this result by an application of Theorem 3.2. 

Let F be the d.f. of X and define G = l-F. Then the equation (4.3.1) 
is equivalent to 

J (y-z)HF(y) = G(z)E(X*) = c G(z} ... (4.3.2) z 

which is equivalent to 

J 
(y-z)*-iQKy)dy = -1 Q(z). 

or 

j0(y+z)y*-*dy 
= 

^G(z). 
... (4.3.3) 
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An application of Theorem 3.2 shows that 

G(x) 
= e~Xx, 

i.e., JT~ E(X). If X and z are allowed to take only integral values, then X 

has the geometric distribution. 

4.4. Order statistics : Let X^n denote the i-th order statistic in a sample 
of n observations. Puri and Rubin (1970) considered the problem of charac 

terizing the distribution of X by the property that X2,2?Xly2 has the same 

distribution as X. Rossberg (1972) and more recently Ramachandran (1980) 
considered the more general problem of identical distribution of Xi+1,n?Xi,n 
and X1>n_i. We consider the Puri-Rubin problem as the more general 

problem can be solved in exactly the same way. 

Defining F and G as before, the condition that X>,2?X1$2 and X have 

the same distribution gives the equation 

2 J G(x+y)dF(y) = G(x), x > 0. ... (4.4.1) o 

Applying Theorem 3.2, we find 

G(x) 
= 

p(x)e~Xx 

where p(x) = p(x+z) V zeF, provided F(0) < 1/2. If the support of F is 

not a lattice then X ~ 
E(X). If the support of F is the set of integers, then 

G(x) 
= 

c?*, x = 0,1, ... 

which yields the probabilities 

Po <Y}pl== ^-^ A = cAW)i - 

where p0 and c are chosen such that #0-hPi+--- 
= * ^#0 

== 
V2* then one 

of the equations to be satisfied is 

P&?+P&3+- 
- = ? 

which implies that only one other pt 
= 

l?2 and the rest are zero. 
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5. Characterizations of the pareto distribution 

The Pareto law which plays an important role in the study of income 

distribution specifies the p.d.f. as 

{1? akx~k, x ^ a, 

0, x < a. 

It is seen that the transformation x = aev makes y an exponential variable. 

Then, for every characterization of the exponential law, we can state the 

corresponding characterization of the Pareto law. Some of the interesting 

results obtained by using the Theorems of Section 4 are as follows. 

Theorem 5.1 : Consider a nonnegative random variable X truncated at 

a > 0, and let R be an independent random variable distributed over the interval 

(0, 1). If the distribution of Y = XR truncated at a is the same as that of X, 

then X has the Pareto distribution. 

Note. If X represents the income of an individual and R the proportion 

of the income reported, then the distributions of the actual income and the 

reported income both truncated below at a given point will be the same only 

if the actual income has the Pareto distribution. Krishna ji (1970) established 

this result when R has a uniform distribution. Our theorem shows the 

validity of this result for any non tri vial arbitrary distribution of R on (0, 1). 

Theorem 5.2 : Let X be a nonnegative random variable and h(-) be a non 

negative and nondecreasing function such that h(0) 
= 0 and for any a > 0 

E 
hi-j \X ̂  a\ = constant; 

then X has the Pareto distribution. 

While the paper was in Prese the authors have come to know that 

Theorem 3.1 of this paper had been proved by J. Deny in 1960 under a more 

general set up. 

References 

A?zel, J. (1966) : Lectures on Functional Equations and Their Applications. Academic Press, 

New York. 

Ahsanullah, M. (1978) : Record values and the exponential distribution. Ann. Inst. Stat. Math., 

30, 429-433. 

-(1979) : Characterization of the exponential distribution by record values. Sarikhy? 

B 41, 116-121. 

Brandhofe, T. and Davies, L. (1980) : On a functional equation in the theory of linear statis 

tics. Ann. Inst. Statist. Math., 32, 17-23. 

A 1-12 



90 KA-SING LAtT AND C. RADHAKRISHNA RAO 

Choquet, G. and Deny, J. (1960) : Sur l'?quation de convolution n 
? 

/i*cr. Compt. Rend. 

250, 799-801. 

Feller, W. (1971) : An Introduction to Probability Theory and its Applications. Vol. II (Second 

Edition), Wiley, New York. 

Galambos, J. and Kotz, S. (1978) : Characterizations of Probability Distributions. Lecture Notes 

in Mathematics, No. 675. Springer-Verlag. 

Grosswald, E. and Kotz, S. (1980) : An integrated lack of memory characterization of the 

exponential distribution. Tech. Rept. Temple University, Philadelphia. 

Huang, J. S. (1978) : On a "lack of memory" property. Statistical Series 1978-84, University 

of Guelph, Canada. 

Krishnaji, N. (1970) : Characterization of the Pareto distribution through a model of unrepor 

ted incomes. Econometrica, 38, 251-255. 

Puri. P. S. and Rubin, H. (1970) : A characterization based on the absolute difference of two 

i.i.d. random variables. Ann. Math. Statist., 41, 2113-2122. 

Ramachandran, B. and Rao, C. R. (1970) : Solutions of functional equations arising in some 

regression problems and a characterization of the Cauchy law. Sankhy? A 32, 1-30. 

Ramachandran, B. (1979) : On the "strong memorylessness property" of the exponential and 

geometric probability laws. Sankhy? A 41, 244-251. 

-(1980) : An integral equation in probability theory and its implications. Tech. Rept. 

Indian Statistical Institute, New Delhi. 

Rao, C. R. (1965) : On discrete distributions arising out of methods of ascertainment. Sankhy? A 

27, 311-324. 

Rao, C. R. and Rubin, H. (1964) : On a characterization of the Poisson distribution. Sankhy? A 

26, 294-298. 

Rossberg, H. J. (1972) : Characterization of the exponential and Pareto distributions by means 

of some properties of the distributions which the differences and quotients of order statis 

tics are subject to. Math. Operationsforsch, u. Statist., 3, 207-216. 

Shanbhag, D. N. (1977) : An extension of the Rao-Rubin characterization. J. Appl. Prob., 

14, 640-646. 

Shimizu, R. (1978) : Solution to a functional equation and its application to some characteri 

zation problems. Sankhy? A 40, 319-332. 

Sohobov, O. M. and Geshev, A. A. (1974) : Characteristic property of the exponential distri 

tion. Natura. Univ. Plovdiv., 7, 25-28 (in Russian). 

Paper received : April, 1981. 

Revised : January, 1982. 


	Article Contents
	p. [72]
	p. 73
	p. 74
	p. 75
	p. 76
	p. 77
	p. 78
	p. 79
	p. 80
	p. 81
	p. 82
	p. 83
	p. 84
	p. 85
	p. 86
	p. 87
	p. 88
	p. 89
	p. 90

	Issue Table of Contents
	Sankhy: The Indian Journal of Statistics, Series A, Vol. 44, No. 1 (Feb., 1982), pp. 1-6, 1-162
	Volume Information
	Front Matter
	Diversity: Its Measurement, Decomposition, Apportionment and Analysis [pp. 1-22]
	Fluctuation Theory for Kac's One-Dimensional Model of Maxwellian Molecules [pp. 23-46]
	On Classical Limit Theorems for Diffusions [pp. 47-71]
	Integrated Cauchy Functional Equation and Characterizations of the Exponential Law [pp. 72-90]
	Some Generalizations of Kantorovich Inequality [pp. 91-102]
	Some Recent Developments in the Theory of Asymmetric Factorial Experiments: A Review [pp. 103-113]
	Existence of Equilibrium Stationary Strategies in Discounted Stochastic Games [pp. 114-127]
	On a Sequential Listing Algorithm for the Maximum Time to Reach an Absorbing State of a Markov Chain under Go/No-Go Options [pp. 128-143]
	Rate of Convergence in the Invariance Principle for Random Sums [pp. 144-152]
	Locally Most Powerful Similar Test for Mixing Proportion [pp. 153-161]
	Back Matter





